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Anisotropic mean-square displacements in two-dimensional colloidal crystals of tilted dipoles
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Superparamagnetic colloidal particles confined to a flat horizontal air-water interface in an external magnetic
field, which is tilted relative to the interface, form anisotropic two-dimensional crystals resulting from their
mutual dipole-dipole interactions. Using real-space experiments and harmonic lattice theory we explore the
mean-square displacements of the particles in the directions parallel and perpendicular to the in-plane compo-
nent of the external magnetic field as a function of the tilt angle. We find that the anisotropy of the mean-square
displacement behaves nonmonotonically as a function of the tilt angle and does not correlate with the structural
anisotropy of the crystal.
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It is common wisdom that a one-component classicakign the valuep=0° to a magnetic field pointingerpendicu-
many-body system consisting of particles at constant densitlar to the confining plane. The magnetic field induces mag-
that interact, e.g., via a pairwise-additive repulsive inversenetic dipoles in the colloidal particles’] and the mutual
power potential, freezes into a periodic crystal lattice at zerdnteraction between them is a pairwise-additive dipole-dipole
temperaturd1]. At finite temperatures and prior to melting, interaction. If the magnetic field is directed perpendicular to
the crystal is still stable but the particles perform small-the interfacg¢=0°), the in-plane interaction is isotropic and
amplitude excursions from their equilibrium positions. Thepurely repulsive. Then, a two-dimensional triangularhex-
averaged mean-square displacement around the equilibriuagona) crystal is stable. By changing the tilt angjeof the
lattice sites, which is a quantitative measure of these particl@ield, the in-plane interaction becomes anisotropic and the
excursions, plays a key role in describing the bulk meltingcorresponding stable crystal has the structure of a two-
process of the crystal: the traditional Lindemann rile8]  dimensional oblique latticE8,15]. We explore the anisotropy
states that a solid melts if the root mean-square displacemeof the mean-square displacements in both directions, perpen-
exceeds about 10% of the lattice constant. This phenomendicular and parallel to the in-plane projecti@ of the ap-
logical rule is a good estimate for melting in three spatialplied external fieldB, as a function of the tilt angle in the
dimensions. In two dimensions, however, mean-square digegime where the interactions are anisotropic but still repul-
placements are divergirl@], but fluctuations of the relative sive. Our main finding is that the anisotropy of the mean-
distance of nearest neighbors can be nevertheless used dgquare displacement doest correlate with the lattice aniso-
establish a bulk Lindemann melting rylg]. tropy. In particular, as the tilt angle is increased, the

In this paper, we investigate traisotropyof the mean-  displacements towards the nearest neighbors are first smaller
square displacements in two-dimensional anisotropic crysthan those perpendicular to the field but then they exceed the
tals. In high symmetry crystals, the mean-square displacdatter at a tilt anglep=22°. This is a hint to different path-
ment is expected to be almost isotropic. Typically, there isvays of defect formation at higher temperatures and there-
only a small difference in the amplitudes of the particle ex-fore could imply different scenarios of two-dimensional
cursions in the direction towards their nearest neighbors andhelting of anisotropic crystal®-11]. Furthermore, both dis-
those pointing towards a void. In fact, detailed investigationplacements behave nonmonotonically as functionsp adt
for three-dimensional hard sphere face-centered-cubic crydixed temperature. We obtain our results by using both real-
tals have revealed that the anisotropies are only significargpace experiments of magnetic colloids and a harmonic lat-
close to melting[6]. This will change, on the contrary, for tice theory for a dipole-dipole interaction and find good
anisotropic crystals of low symmetry, where the crystalagreement between the two.
structure itself already provides different lattice constants In our experiments, monodisperse polystyrene particles
forming the conventional unit cell. An interesting question is[12] with a diameter of 4.5um and a mass density of
whether the anisotropy of the underlying crystal lattice cor-1.5 g/cn¥ are confined to the water/air interface of a hang-
relates with the anisotropy of the particle mean-square dising water droplet by gravity. The particles are superparamag-
placement, i.e., whether the latter follows the crystal anisonetic due to doping with F©5; nanoparticles, and, therefore,
tropy or not. magnetic dipole moments can be induced by applying an

Here we study an anisotropic two-dimensional colloidalexternal magnetic fiel@. As shown in Ref[13], the inter-
crystal composed of superparamagnetic particles that ar@ction between the particles is precisely described by the
pinned by gravity to a horizontal water-air interfadg and  dipole-dipole interaction, which dominates all other interac-
experience an external magnetic fi@dilted relative to the tions. The cylindrical sample cdltliameter of 8 mmis hori-
normal of the water-air interface by an anglei.e., we as- zontally aligned, and the flatness of the interface is con-
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ability of vacuum, ang is the two-dimensionadreadensity
of the systenj14].

After equilibration of the system for several days in the
crystalline state, the entire sample consisted of one mono-
crystalline domain. Figure 1 shows a typical example of the
centered rectangular crystal lattice observed. The underlying
lattice was determined by extracting the lattice constants
from the Fourier transform of the particle positions and has
been shown to agree perfectly with theoretical calculations
[15]. Only in the case of tilting angles between 0° and 10° it
is difficult to compare theory and experiments since within
SiiiiiarsraiaaiiiasIiiies Sieseiiiiiiiiliti: this region anisotropy is too small to align the crystal lattice

SO0 et saadsgiisaaiisiiieiaiel: with respect to the external magnetic field.
R o o o SRR seslaseiiatics From the experimentally determined particle positions,
: ik suaiiii siiiiiiiiiiiiiiisiiie we have extracted the projections of the time-dependent Lin-
demann parameter, defined [45,16]:

FIG. 1. Camera image of an anisotropic colloidal crystalpat M
=21.8°,B=0.8 mT, andp=6.8X 10° m™2. In the upper left corner 1 )
nearest neighbor bond orientations are highlighted by lines. The () = a2M E ([ij(t) _Axi+m(t)] ) ()
angles of 50° and 65° between these directions clearly show the m=1
anisotropy of the lattice. The anisotropy is also obvious from thegnd
Fourier transformation of the particle positiofinsed: There is a

M

clear deviation from the symmetric hexagon corresponding to the 1

triangular lattice. W)= a22M > ([Ay;(t) - ij+m(t)]2> (3
m=1

trolled with an accuracy of +m in order to achieve a perpendicular and parallel to the in-plane component of the
uniform particle density throughout the sample cell. The col-magnetic field, which is pointing along tlyeaxis. In Eqs(2)
loids were observed through ax5microscope objective by and (3) above, Ax(t)=x(t)—x(0) and Ay,(t) =y, (t)—y,(0)
digital video microscopy. The size of the field of view was denote, respectively, the- and y-components of the dis-
840X 620 um?; usually 2000-3000 particles were observed,placement of the particle centered at tkih lattice site.
while the whole cell contained roughly 200 000 particles.Moreover, the summation contains the relative displacements
The diameter of the particles is typically around 9 pixelsof M neighbors of any given site and the average over those
with one pixel covering the area of roughlym? leading to  is taken via a division through. Finally, the Lindemann
an expected accuracy in the particle coordinates of abolarameter is rendered dimensionless by dividing thraafgh
+0.1 um. All measurements were carried out at room tem-wherea is the lattice constant along thedirection. In the
perature. The magnitude of the external magnetic eldas  case of an isotropic interaction potentigl=0°), the particle
used to control the interaction strength to be defined coordinates are rotated prior to the calculation of the Linde-
shortly. The anisotropy of the interaction between the parmann parameter in order to align one of the lattice vectors
ticles was controlled by tilting the magnetic fiekl away  with the y-axis, which is determined by the geometry of the
from the direction vertical to the sample plane. magnetic field apparatus. Such a rotation is not necessary for
In a system interacting by means of a power-law potenthe centered rectangular crystéls>0°), since the shorter
tial, all structural and thermodynamic properties depend on @+ the two lattice vectors is then pointing along the in-plane
single dimensionless combination of temperature and derbomponent of the magnetic field.
sity, the so-called coupling constalit For the case at hand, In Fig. 2 we show three examples of the two projections
in which the magnetic moments of the involved particles argyf the Lindemann parameter for differedt and tilting
proportional to the product of the magnetic susceptibility angles. As expected for a crystalline state, a constant value is
and the external fiel@, this coupling constant is given by  5pproached in the long-time limit. Note that in the case of
wo(xB)? oo ¢=21.8°(Fig. 2, righ} the projection parallel to the in-plane
= mp ) (1) component of the 'magnetlc fleld_iarger than the one per-
pendicular to the field, whereas in case¢osf19.3° (Fig. 2,
wherekg is Boltzmann’s constanjy is the magnetic perme- left) it is the other way around.
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In order to analyze the particle displacements theoreti- 6.0
cally, we employ harmonic lattice theof%7]. The latter pro- ss | Be——aB |
vides an explicit expression for the equal-time correlators | [ |
between the particle displacements, which can then be com- sot By } f
pared with the corresponding experimental long-time limit of ¢ ! h
. 45t B I
the Lindemann parameters. Ly
We aim to provide a theoretical explanation for the aniso- 240 F !/
tropy of the long-time Lindemann parameters observed in & 4 n
the experiments. The Lindemann parameters along and per- 5r Fa
pendicular to the magnetic field are defined by E@$.and 508 TTee—ol . o o g’ ]
(3). The underlyingstatic crystal is spanned by two lattice -t TTESe— -
vectorsa andb and can be equivalently described by the two 25 .
lattice constant& and b and the angle/ between the two
lattice vectors. The parameteas b, and ¢ are uniquely de- 20 TS s 75 10 125 15 175 20 2.5
termined for any giverp: the optimal periodic structure for a @ [in degrees]
given tilt angle is obtained by minimization of the ground-
state energylattice sumg using the dipole-dipole pair inter- FIG. 3. The Lindemann parameteygsandy, plotted against the
action potentia[8]: tilt angle ¢ of the magnetic field. The soli(dashedl lines corre-
( B)2 1 spond to_theoreltlicajfx(yy) whc;Ie thle triangIeisq_ualre}s_(lz_(:]rrespond
Mol X . to experimentally measured values, respectively. The continuous
v(r) = r_3(1 - 3sirf ¢ cos 0), ) lines gertain to r)ésults obtained by keepiEg the '[)\/NO nearest neigh-

) . ) ) o . bors in they-direction in the summation of E¢8). The filled circle
wherer is the interparticle separation vectoris its magni-  at»=0° denotes the theoretical result obtained when the sum of Eq.
tude, and cog=r -B/(rB)). As it has been found in Reff8],  (8) extends over alM =6 neighbors in the triangular lattice, which
the shortest of the two lattice vectors is always pointingis the stable crystal structure there. Here, theory yields resultg for
alongB,. We adopt the convention that this vectoajdience  and y,, which are so close to each other that cannot be resolved
ash. within symbol sizes used in the figure. We plot the valligsy, ,

The harmonic theory used to calculate the equal-time corwhich are universal within harmonic theory, whereas the experi-
relation functions of Eqs(2) and (3), <|ij—ij+m|2> and mental results were obtained for different valued ofvarying be-
<|ij_ij+m|2> [17] is based on the diagonalization of the tween 10 and 27. The inset shoyvs_the geometry of the_ Iattlc_e and
dynamical matrixD(q) (a two-by-two matrix in our case d!rectlons of the external magnetlc field as well_as the or_lentatlon of
obtained as the discrete Fourier transform of the real spaclé'ndemann parameters with respect to the lattice and field.

dynamical matrixD(R) with elementq1]: . . . .
=10, whereA is the area of the direct lattice cell, hence this

D,/R)= 5R,OE v,(R) =v,,(R), (5)  ratio depends only on the tilt angle of the external field. The
R’ summation is carried out ové¥l nearest neighbors that are
connected to a given lattice point through the ve&qt For
the cases of tilted external fieldg # 0°), in which the re-
Fo(r) sulting crystal lattice is strongly anisotropic, the summation
= o ar (6) extended to theM =2 nearest neighbors. For perpendicular
wzy external fieldB(¢=0°), the equilibrium lattice is triangular
r.» 1S the(u, v)-component of the vectar, u, v=x,y,and and hence the sum covered tNe=6 nearest neighbors of
the potentiab(r) is specified in Eq(4). The quantitie®R and  that structure. It is useful, at this point, to introduce the res-

where

V()

R’ are lattice vectors. caled, dimensionless variablds=qa, S,=R,,/a and ¢
The diagonalization yields for every-value two eigen- =a?\i/(IkgT). Then, Eq.(7) takes the form:

values\; and the corresponding eigenvectersi=1, 2 with M 5 5

Cartesian components, ande; , on thex- andy-axes, re- 1 EE sir? k Sm( Clu + Su )dzk

spectively. The Lindemann parameters in the directions per- Y= I'K D, M 1 2 \&gk)  &k)

pendicular and parallel to the in-plane projection of the ex-
ternal magnetic field are given within this approximation (L=XxY), (8)

through the expressidit8] with the integration carried over the rescaled Brillouin zone

D,. The integral on the right-hand side of E@) above
) 2q dependsonly on the tilt angleg.
The theoretical prediction states that the Lindemann pa-
(L=%Y). @) rameters scale ago<1/T°, which is _the asymptotically_ exact
' limit for small temperature or high number density. The

In Eq. (7) above, the integration is carried out over thescaled anisotropic mean-square displacements as obtained
first Brillouin zoneC, of the reciprocal lattice. The quantity from harmonic lattice theory are plotted in Fig. 3, where they
at the denominator of the prefactor is given Ky 7?a?/A  are also compared to the experimental data. On the basis of

M 2 2
keT [ 1 .q -Rm< e &
L s, G

K G 2 )\l(q) )\Z(Q)
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these results, we can draw the following conclusions: Firstpther, whereas the theoretical results are much closer to each
there is very good quantitative agreement between theorgther, so that only one poirithe full circle) can be shown
and experiment at all tilt angles. Since the experimental datéhere; the difference betweeyp and v, is smaller than the
were taken at different values foy, thereby the 1F-scaling  symbol size. The strong reduction of the anisotropy in the
as well as the dependence on the tilting angle is proven thindemann parameters is a direct consequence of the much
agree with the theory. Secondly, the behavior of the meanhigher isotropy of the triangular crystal, as opposed to the
square displacements as a functiongois nonmonotonic. oblique ones, stable fap# 0°. Yet, there are two points that
For increasinge, they first decrease and then grow largermust be emphasized here: first, even in the triangular crystal
again. Third, fore<22°, the displacements parallel to the there is a structural anisotropy between thalirection
in-plane component of the external magnetic field argwhich points towards the nearest neighbors of a given par-
smaller than those perpendicular to this direction but thejcle) and thex-one, which points towards the voids, hence
trend is reversed as the tilt angle grows to higher values. Thig,e resulting isotropy in the Lindemann parameters is not a
behavior is unexpected at a first glance but can be undefyia| result. And secondly, in order to calculatie theory
stood by an intuitive argument; fap~0°, there is 1ess re- o measurdin experiment Lindemann ratios that are almost
pulsion of the particles in the direction parallel to the f'e|d:equa| in they- and x-directions, a summation ovel six
resulting thereby in a smaller lattice constant in this direc'neighbors must be carried out. Indeed, as can be seen in Fig.
tion. This, in turn, leaves less freedom for a particle to Per3, if a sum over only the two neighbors in tlyedirection

form displacements than in the other, perpendicular direc(which are the nearest ones for the case 0°) is carried
tion. This finding implies that in case of the anisotropic oyt then the Lindemann parameters remain highly aniso-
crystals the anisotropy of the Lindemann parameter do¢s tropic all the way down top=0°. This explains both the
scale with the anisotropy of the underlying crystal lattice; thepartial restoring of isotropy ab=0° and the “jump” of the
reduction of the repulsions in th&-direction does not auto- | jndemann values there.

matically imply .that the o_scillations in 'ghis direction are |y conclusion, we have demonstrated, by theory and ex-
broader in amplitude than in the perpendicular one. In addiyariment, that particle displacements in a two-dimensional
tion, the mean-square displacements cannot simply be scalefisotropic crystal are strongly anisotropic. Depending on
away by relating them to the nearest-neighbor distances, 3fe pair interaction between the particles, the anisotropy in
has been shown for the liquid and hexatic phesfe Ref.  ho displacements does not necessarily follow the anisotropy
[15]). Finally, for ¢~22°, the interaction is very weakly re- . the |attice constants. This result was obtained for colloids
pulsive in theB,-direction, hence a soft mode starts ap-pt js directly relevant for any other strongly confined dipo-
proaching in this direction, corresponding to stronger deloj,r gheets, e.g., monolayer ice in confinement in the absence
calization c_>f particles. Ap=22° the softness is s_ufficient i_n [19] or in the presencé20] of an aligning electric field. It
order to bring about arossovebetween the relative magni- oyid be interesting to measure the full phonon spectra, in
tudes ofy, andy,: whereas fokp<22° we havey,> v, for - analogy to what has already been done for the isotropic case
¢>22° the reverse is true. Theory and experiment are ifio1] Furthermore, defect formation should be included in
agreement regarding the location of this crossover behaviofye theory, to incorporate effects close to crystal melting.
as can be seen from Fig. 3. In fact, theory predicts a rapiging|ly it would be interesting to study inhomogeneous field
growth of the parametey,, which indicates that the crystal gffects which may give rise to crystalline clusté22] and

structure itself is getting mechanically unstable, as has beeéludy the particle displacements in a finite cluster.
shown in Ref[9].

Let us now turn our attention to the Lindemann param- This work has been supported by the Deutsche
eters for the case of perpendicular fielgs;0°. As can be ForschungsgemeinschafdFG), within subprojects C2 and
seen in Fig. 3, in this case the anisotropy betweernxitend  C3 of the SFB-TR6 Collaborative Research Center “Physics
y-directions almost disappears. The experimental data pointf colloidal dispersions in external fields.” We thank R.
for the two Lindemann parameters lie within 5% of eachBlaak for helpful discussions.
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